首页> 外文OA文献 >Deep Quantization: Encoding Convolutional Activations with Deep Generative Model
【2h】

Deep Quantization: Encoding Convolutional Activations with Deep Generative Model

机译:深度量化:用深度编码卷积激活   生成模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep convolutional neural networks (CNNs) have proven highly effective forvisual recognition, where learning a universal representation from activationsof convolutional layer plays a fundamental problem. In this paper, we presentFisher Vector encoding with Variational Auto-Encoder (FV-VAE), a novel deeparchitecture that quantizes the local activations of convolutional layer in adeep generative model, by training them in an end-to-end manner. To incorporateFV encoding strategy into deep generative models, we introduce VariationalAuto-Encoder model, which steers a variational inference and learning in aneural network which can be straightforwardly optimized using standardstochastic gradient method. Different from the FV characterized by conventionalgenerative models (e.g., Gaussian Mixture Model) which parsimoniously fit adiscrete mixture model to data distribution, the proposed FV-VAE is moreflexible to represent the natural property of data for better generalization.Extensive experiments are conducted on three public datasets, i.e., UCF101,ActivityNet, and CUB-200-2011 in the context of video action recognition andfine-grained image classification, respectively. Superior results are reportedwhen compared to state-of-the-art representations. Most remarkably, ourproposed FV-VAE achieves to-date the best published accuracy of 94.2% onUCF101.
机译:深度卷积神经网络(CNN)已被证明对视觉识别非常有效,其中从卷积层的激活中学习通用表示形式是一个基本问题。在本文中,我们介绍了采用变分自动编码器(FV-VAE)的费希尔向量编码,这是一种新颖的深层体系结构,通过端对端训练它们来量化深层生成模型中卷积层的局部激活。为了将FV编码策略整合到深层的生成模型中,我们引入了VariationalAuto-Encoder模型,该模型可指导神经网络中的变化推理和学习,可以使用标准随机梯度方法直接对其进行优化。与常规生成模型(例如高斯混合模型)将FV-VAE简化为适合数据分布的常规生成模型(例如高斯混合模型)所表征的FV不同,所提出的FV-VAE更灵活地表示数据的自然属性,以便更好地推广。对三个公众进行了广泛的实验分别在视频动作识别和细粒度图像分类的上下文中的UCF101,ActivityNet和CUB-200-2011等数据集。与最先进的表示方法相比,报告的结果更好。最引人注目的是,我们提出的FV-VAE在UCF101上实现了94.2%的最佳公布精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号